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A concise method for following the evolving geometry of a moving surface using Lagrangian coordinates is
described. All computations can be done in the fixed geometry of the initial surface despite the evolving
complexity of the moving surface. The method is applied to three problems in nonlinear elasticity: the bulging
of a thin plate under pressure �the original motivation for Föppl–von Karman theory�, the buckling of a
spherical shell under pressure, and the phenomenon of capillary wrinkles induced by surface tension in a thin
film. In this last problem the inclusion of a gravitational potential-energy term in the total energy improves the
agreement with experiment.
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I. INTRODUCTION

The elasticity theory of thin shells is largely differential
geometry by another name. In this paper I describe an alter-
native method for following the differential geometric data
of a surface as it moves, and illustrate its application to non-
linear elasticity theory. The equations of the method are com-
pletely general for smooth surfaces, and so could in principle
describe the complex motions of crumpling up to the forma-
tion of singularities.

Problems involving elastic membranes have been ap-
proached in several ways, including numerical simulation by
triangulated surfaces, using a polyhedral approximation to
differential geometry �1�. Another approach has been to use
differential geometry and scaling laws to understand the line
and point singularities of crumpled surfaces analytically
�2–7� and numerically �8�. The method of this paper gener-
alizes familiar methods of mechanical engineering for the
nonlinear elasticity theory of thin shells �9–11� in going be-
yond second order, and in treating initially curved surfaces in
a unified way. The postbuckling theories of Koiter �12� mo-
tivate the search for a truly general approach. A sophisticated
treatment of such problems, but different from the treatment
here, is that of Ciarlet �13�.

Section II establishes notation for the differential geom-
etry of a moving surface and shows how to use Lagrangian
coordinates to simplify its description, the main idea of this
paper. Section III summarizes the observations of the previ-
ous section in a system of differential equations for the
evolving surface and its strains. Section IV compares this
approach to Föppl–von Karman �FvK� theory, and solves the
motivating problem for that theory, the bulging of a thin
rectangular plate subject to pressure, by integrating the evo-
lution equations forward in time. Section V uses second-
order expansions of the crumpling equations to describe the
buckling of a sphere under pressure. Section VI uses the
insights of Cerda and Mahadevan �14� to give a more de-
tailed description of a phenomenon recently discussed in
�15�, capillary wrinkles induced by surface tension in a thin
film. A previously unnoticed discrepancy with experiment is

partially resolved with the inclusion of the gravitational po-
tential energy of the system.

II. GEOMETRICAL METHODS

In terms of smooth coordinates �x1 ,x2 ,x3� in space one
can describe the deformation of a material object by the tra-
jectories of its constituent particles, solutions of equations of
motion

dxi

dt
= Vi�x,t� , �1�

where

V = Vi�i �2�

is the vector field generating the flow and t is a parameter
along the flow. Integrating the system forward to t=1, one
can also think of Vi as a displacement, a slight abuse of
notation that should be clear from context. Metric relations
among the particles are given by

ds2 = gijdxidxj , �3�

where gij is a Riemannian metric tensor, perhaps, but not
necessarily, the Euclidean metric.

I coordinatize the material object by Lagrangian coordi-
nates, convected by the flow, i.e., every material point keeps
the same coordinates that it had originally. In this case the
changing metric relationship of material points, namely, the
change in the expression Eq. �3�, is due entirely to the
change in the metric components gij because dxi, which for
this purpose simply assigns to a line segment the coordinate
difference of its end points, is invariant. The rate of change
as a consequence of this deformation in the components of
the metric g, or of any second-rank tensor G, expressed in
convected coordinates, is given by the Lie derivative �16,17�

£VG�� j,�k� = VGjk + G��� j,V�,�k� + G�� j,��k,V�� . �4�

Here � , � is the Lie bracket of vector fields. It is more com-
mon to express objects like these, derivatives of tensors
which are themselves tensors, in terms of the covariant de-
rivative with respect to the metric connection, and to employ
the conventions of raising and lowering indices with gij and*mpeterso@mtholyoke.edu
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its matrix inverse gij, such that, for example the co-vector
with components

Vi = gijV
j �5�

has covariant derivative with respect to xk �denoted Vi;k�, in
terms of the ordinary partial derivative �denoted Vi,k� given
by

Vi;k = Vi,k + �ik
j Vj , �6�

where the coefficients of connection � are

�ik
j =

1

2
gjm�gik,m − gmi,k − gkm,i� . �7�

It is straightforward to verify for any second-rank tensor G��

that

£VG��k,��� = gij�VjGkl;i + Vj;kGi� + Vj;�Gki� . �8�

In particular, if G is the metric tensor g, which is a covariant
constant, we recover the well-known result

£Vg��k,��� = V�;k + Vk;� = 2Uk�, �9�

where U is the rate of strain tensor of the flow V �or the
first-order strain of the displacement V�. Nothing said above
was specific to three dimensions, and therefore every state-
ment can be interpreted as referring to a surface with a Rie-
mannian structure if the indices take only two values and not
three. From now on I shall use Latin indices for tensors in
three-space, and Greek indices for tensors on a surface.

Now consider a smooth material surface M, so thin that
one may regard it as two dimensional, and let �x2 ,x3� be
coordinates in this surface, while x1=z is displacement along
the normal to the surface, with the positive direction chosen
conventionally, such that the surface M is z=0. Such a coor-
dinate system exists for a neighborhood of M such that �z�
�1 /C, where C is the supremum over M of both principal
curvatures in absolute value. The metric tensor in these co-
ordinates takes the form

g = �1 0

0 g�� + 2zh�� + z2k��
� . �10�

The tensor g��, with Greek indices taking values �2,3�, is the
first fundamental form of M, h�� is the second fundamental
form, and k��=h�

�h�� is the third fundamental form. All these
tensors are associated with the surface M, and not with the
ambient space. They do not depend on z, i.e., all z depen-
dence in Eq. �10� is explicit. The plus sign on the middle
term is a conventional choice. On a sphere, for example, one
could take the positive direction for z to be the outer normal
direction, and the principal curvatures of the sphere to be
positive.

Now let a vector field �a ,V�� be prescribed on M with
normal component a�x2 ,x3� and tangential components
V��x2 ,x3�, and extend it to a neighborhood of M as

W = a�z + V��� − zG���a,���, �11�

where initially the tensor G���=g��. In a short time �t, the
flow generated by the velocity field W changes the metric
tensor components by approximately

�g = �t£Wg . �12�

The tensor g+�g regarded as a tensor on three-space ex-
presses the ambient Euclidean geometry in Lagrangian coor-
dinates. If g+�g is restricted to the surface z=0 and indices
�2,3�, one has the slightly altered first fundamental form of
M,

G�� = �g�� + �g����z=0, �13�

expressing the non-Euclidean geometry of the slightly al-
tered M induced by its embedding in the ambient Euclidean
space. The term linear in z in Eq. �11� was chosen to main-
tain the block-diagonal form of Eq. �10� to first order in z.
Therefore, taking the z derivative, one has the slightly altered
second fundamental form of M,

H�� = � �

�z
�g�� + �g���	

�z=0
. �14�

The third fundamental form could not be computed in this
way, but it is determined by H��,

K�� = H��H�
�. �15�

I now imagine taking a sequence of such small steps, and I
will continue to denote by G�� and H�� the evolving first and
second fundamental forms giving the Riemannian structure
on M induced by the embedding in Euclidean space. I will
not make use of this Riemannian structure for computations,
however.

There is another natural Riemannian structure on M,
namely, that given by the original, undeformed first funda-
mental form g��, together with its associated connection,
etc., which I shall continue to use, being careful not to give it
erroneous interpretations. This Riemannian structure, unlike
G��, has no obvious geometrical meaning on the deformed
surface, but it is still useful in a formal way. Another possible
interpretation, deliberately suppressing the geometrical
meaning of G��, is to imagine a surface that is not deformed
by the flow W but carries tensor fields G�� and H��, initially
coinciding with g�� and h��, that are deformed by W. That
these happen to be the first and second fundamental forms of
an evolving surface is forgotten. In this picture the unde-
formed g�� has an obvious geometrical meaning as the met-
ric on the underlying unchanging surface, which is the arena
for the evolving G�� and H��.

In Eq. �11� I introduced the tensor G���, initially g��.
More generally G��� is the inverse of G�� as a matrix. It is a
tensor field on M, but it is not obtained from G�� by raising
indices. Raising indices is an operation accomplished by g��,
my chosen Riemannian structure, not by G���. The prime on
G� is a reminder that it is not some version of the tensor G.

I have shown how G�� and H�� change, to first order,
under a deformation �a ,V�� of M, assumed now always to be
extended off M as in Eq. �11�. In turn, �a ,V�� might evolve
so as to reduce at each step a free-energy functional depend-
ing on G�� and H��. In this way I will arrive at crumpling
equations, a system of differential equations for �a ,V��, G��,
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and H��, describing the evolution of M. Before considering
the equation for �a ,V��, though, there is another issue to
consider.

This formulation leaves implicit what the evolving sur-
face actually looks like since mere knowledge of G�� and
H�� is not a convenient description of M. To keep track of
the positions of points on the surface, one should integrate
Eq. �1� using components of W�0,x��= �a ,V�� with respect
to fixed Cartesian coordinate axes. Let XA�x1 ,x2 ,x3 , t� be a
Cartesian coordinate function in space. It is time independent
in the physical sense, but its functional form depends on time
because the xi evolve in time. The one-form dXA=X,j

Adxj as-
signs the XA component WA to the vector W. This one-form
evolves in time at the rate given by the Lie derivative

£WdXA��i� = WdXA��i� + dXA���i,W�� , �16�

=WjX,ij
A + W,i

j X,j
A , �17�

=�X,j
AWj�,i. �18�

Thus UA=UiXi
A, the XA component of any vector field U

=Ui�i at time t can be found using Xi
A�x1 ,x2 ,x3 , t� solving

�Xi
A

�t
=

��Xj
AWj�

�xi , �19�

with appropriate initial conditions. By the definition of the
coordinate x1=z, the Cartesian coordinate XA is an affine
linear function of z. It is essential therefore to expand Xj

AWj

only to first order in z in Eq. �19�. To be completely explicit,
X1

A is independent of z and we can represent

X�
A = Y�

A�x2,x3� + zZ�
A�x2,x3� . �20�

Then Eq. �19� says

�X1
A

�t
= Z�

AV� − Y�
Aa,�G���, �21�

�Y�
A

�t
= �X1

Aa + X�
AV��,�, �22�

�Z�
A

�t
= �Z�

AV� − Y�
Aa,�G����,�. �23�

The linear approximation I have made in the neighborhood
of M obscures the fact that if W were made to carry affine
normal lines to affine normal lines exactly, as one could al-
ways require by a suitable nonlinear extension W of �a ,V��
off M, then Xj

AWj would be exactly an affine linear function
of z without approximation. The evolution of M is the same
for any extension, however, so what looks like a linear ap-
proximation in the method is actually exact.

As a special case, I describe motion at constant velocity,
i.e., �WA /�t=0 for each component A. Then

0 =
��Xj

AWj�
�t

= �Xk
AWk�,jW

j + Xj
A�Wj

�t
. �24�

Thus the components of W must evolve according to

�Wk

�t
= − XA

k �X,j
AWj�,iW

i. �25�

Here XA
k is the inverse of Xj

A, considered as a matrix. Equa-
tion �25� for straight line motion is recognizable as

�Wk

�t
+ Wj� jW

k = 0, �26�

where �k is the covariant derivative with respect to the met-
ric connection of the Euclidean metric in three-space ex-
pressed in the evolving Lagrangian coordinates. I emphasize
that I have chosen, however, not to use the evolving geom-
etry but rather the fixed initial geometry of M for all com-
putations, a great simplification.

III. EVOLUTION EQUATIONS

By the arguments of the previous section the surface M
evolves according to

�G��

�t
= V�G��;� + V;�

� G�� + V;�
� G�� + 2aH��, �27�

�H��

�t
= aK�� − a,�;� +

1

2
a,�G����− G��;� + G��;� + G��;��

+ V�H��;� + V;�
� H�� + V;�

� H��, �28�

Using these relations one can find how other geometric quan-
tities change, for example the area element


Gdx2dx3, �29�

involving the determinant of the first fundamental form

G = G22G33 − G23G32. �30�

The result is

�
G

�t
= �V�
G�,� + aG���H��


G . �31�

Integrating one finds 
G and hence dilation strain. The strain
tensor

1

2
�G�� − g��� �32�

can be found by integrating Eq. �27�. A natural definition for
nonlinear shear strain S�� is

�S��

�t
=

1

2
� �G��

�t
−

1

G

�
G

�t
G��� . �33�

The subtracted term removes the contribution of dilation
strain. S�� is not traceless, in general, beyond first order.

IV. COMPARISON WITH FÖPPL–VON KARMAN
APPROACH

A simple example illustrates the use of this formalism and
points out its relationship to FvK theory �9�. FvK considers
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the equilibrium state of a thin membrane subject to external
forces and boundary conditions. Since the metric strain
within a membrane is typically small, even for large normal
displacements, it makes sense to continue to use linear
stress-strain relationships. The strain may, however, be a
nonlinear function of displacement, and therefore displace-
ment may be nonlinearly related to stress. FvK thus produces
nonlinear equations for the equilibrium shape of an elastic
membrane subject to external stress.

Historically this idea was implemented by expanding the
strain tensor to first order in tangential displacement but sec-
ond order in normal displacement. I derive the FvK strain by
solving the evolution equations to first order in V� and sec-
ond order in a, continuing to use the notation of previous
sections, with the initial velocity vector

W�0� = a�z + V�0���� − zG���a,��� �34�

of Eq. �11�. I am using the superscript �0� to indicate the
initial value, which is also the zeroth approximation for an
iterative solution. Other initial values are g��=G��

�0�=	�� and
h��=H��

�0�=0. I use Picard’s method to generate the solution
to the differential system Eqs. �19�, �25�, �27�, and �28� it-
eratively as a power series in t, taking M to be the Euclidean
plane with the usual Cartesian coordinates. In this case there
is no distinction between indices up and indices down, and
covariant derivatives are ordinary partial derivatives. Iterat-
ing once and ignoring quadratic terms except in a gives

G��
�1� = 	�� + t�V�,�

�0� + V�,�
�0� � , �35�

H��
�1� = − ta,��, �36�

V�
�1� = taa,�. �37�

Iterating a second time, still ignoring quadratic terms except
in a, gives

G��
�2� = 	�� + t�V�,�

�0� + V�,�
�0� � − 2ta,�� + t2a,�a,�. �38�

Finally, evaluating at t=1, gives the FvK metric strain

1

2
�G��

�2� − 	��� =
1

2
�V�,�

�0� + V�,�
�0� + a,�a,�� − a,��. �39�

This is the computational starting point for FvK theory. The
rest of that theory follows from minimizing the elastic en-
ergy, expressed as a quadratic functional of this strain and
the first-order bending strain H��

�1�, to find the equilibrium
shape.

The approach of this paper is to develop the nonlinear
strain as the solution to a differential system. From that point
of view the derivation of Eq. �39� is not very natural since to
obtain it one must artificially impose the condition that the
trajectories of the particles are straight lines, a condition that
introduces, via Eq. �37�, a second-order correction into the
strain that is necessary to obtain Eq. �39�. Although one can
certainly parameterize the possible final shapes of M by dis-
placement of particles along straight lines, it is a different
thing to say that particles actually move along straight lines.
FvK theory does not claim this, and in that sense it is not a
dynamical theory. A dynamical theory would determine the

evolution of the velocity vector �a ,V�� by some local physi-
cal law, replacing Eq. �25� in the differential system. It
would be a simpler theory, both conceptually and computa-
tionally, in that solving it would only require integrating a
differential system forward in time. I will do the obvious
thing and choose W to reduce the elastic energy at each step,
seeking the minimum.

A typical phenomenological elastic energy functional is

E = Ed + Es + Ec, �40�

where

Ed =



2
�

M
�
G


g
− 1�2


gdx2dx3, �41�

Es = ��
M

S��S��

gdx2dx3, �42�

Ec =
�

2
�

M

�G���H�� − g��h���2
gdx2dx3, �43�

and where 
, �, and � are the two-dimensional �2D� com-
pression modulus, shear modulus, and bending modulus, re-
spectively. These forms are simply chosen for illustration.
The area element involves 
g, not 
G, because the energy
due to metric strain is better understood to be per unit mass,
not per unit area, and the mass is convected with the material
coordinates. The system will move, if possible, to lower its
energy, so one must compute the variation in E with respect
to a small normal displacement 	a and tangential displace-
ment 	V�,

	E = �
M
� 	E

	V�	V� +
	E

	a
	a	
gdx2dx3. �44�

The work done on M in deforming it represents energy given
up by some other part of the system, so this work should be
added with a minus sign to the total change in energy. Work
done by pressure P in a small normal deformation 	a, for
instance, is

W = P�
M

	a
Gdx2dx3, �45�

where now one must use the physical area element 
Gdx2dx3

on M. A small displacement in the direction opposite to this
“gradient,” i.e.,

a = La�−
	E

	a
+ P


G

g

� , �46�

V� = LV�−
	E

	V�� �47�

will lower the energy and move the system toward a local
minimum. The linear operators La and LV include a projec-
tion onto the space of admissible velocity vector fields. They
must define positive semidefinite quadratic forms with re-
spect to the inner product given by integration over M. Apart
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from these requirements, they will vary with the application.
This is just the familiar notion of conjugate gradient. One
could also think of La and LV together as defining a general-
ized mobility tensor because it transforms generalized force
into velocity. If one only wants to know the final state, one
could try to choose La and LV so as to reach equilibrium in
the most efficient way. In any case, the dynamics of the
system is not completely determined by the elastic energies,
and additional physical considerations must be added to
complete the theory in a specific application.

Equations �46� and �47�, together with the evolution equa-
tions of Sec. III, are what I mean by Lagrangian crumpling
equations. The original problem addressed by FvK theory,
the bulging of a square plate fixed on the boundary and sub-
ject to pressure, can be solved straightforwardly in this way.
I represent all geometric data by discretization on a square
grid of points of the original square. Spectral methods �fast
Fourier transform with antialiasing� make the computation
efficient, and the gradient flow converges quickly to a solu-
tion. Note that any implementation of this method can avail
itself of a check to be sure the evolution of the surface data is
accurate. The fundamental forms G and H of a surface must
satisfy the Gauss-Codazzi identities,

H��,� − H��,� + E��
� H�� − E��

� H�� = 0, �48�

where

E��
 =

1

2
G���G��,� − G��,� − G��,�� . �49�

In integrating the crumpling equations forward in time, one
has all the data to evaluate the left-hand side �LHS� of Eq.
�48�. It should be zero within round-off error, a comprehen-
sive check of the entire method, right through the numerical
implementation. In the computation described above, in a
typical case, the sup norm of the individual terms in Eq. �48�
was 0.016, while the sup norm over all the LHSs in Eq. �48�
was 6.7�10−8, consistent with round-off error. A �unit�
square plate at equilibrium bulging under pressure from be-
low is shown in Fig. 1. The crumpling equations were inte-
grated forward by Euler’s method, step size �t=0.01. The
operators La and LV in Eqs. �46� and �47� were chosen to
mollify the unbounded operators 	 /	a and 	 /	V� of Eq. �44�
as

La�u� = F−1� F�u�
�1 + �k�2�2� �50�

with the same formula for LV, where F is the 2D discrete
Fourier transform on a 48�48 grid and k is the argument of
the Fourier-transformed function.

The quantity E−W, elastic energy minus work done by
pressure, approaches its minimum is shown in Fig. 2 as a
function of the number of Euler steps. All of this verifies the
good numerical properties of the method.

V. BUCKLING OF A SPHERE UNDER PRESSURE

I consider an elastic spherical shell subject to pressure P,
described by the phenomenological energies of Eqs.

�41�–�43� and �45�. For small enough pressure the sphere is
uniformly compressed, but as pressure increases it buckles. I
will describe the buckling by using expansions of strain to
second order in displacement where necessary, not the FvK
expansion, but the “dynamic” one of this paper, found by
solving the crumpling equations iteratively. It turns out that
the expansion must include more terms than FvK.

For a sphere of radius R, in terms of spherical polar co-
ordinates �� ,��,

g�� = diag�R2,R2 sin2 �� , �51�

h�� = g��/R , �52�

k�� = g��/R2. �53�

Taking R=1, and regarding all quantities now as dimension-
less, the perturbed geometric quantities in a general displace-
ment �a ,V�� are
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FIG. 1. �Color online� A square plate bulges under pressure from
below. The coloring is by Gauss curvature. Elastic moduli were
chosen arbitrarily to be 
=1, �=1, �=0.1, and the pressure was
P=0.1.
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FIG. 2. The quantity E−W for the square plate in Fig. 1 ap-
proaches a minimum as shown as a function of Euler steps, starting
from the flat square.
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G�� = g�� + V�;� + V�;� + 2ag��, �54�

H�� = g�� + ag�� − a,�;� + V�;� + V�;�, �55�


G = 
g�1 + �V;�
� + 2a� +

1

2
�V;�

� V;�
� + V�V;�;�

� + 4aV;�
�

+ 2V�a,� − aa;�
� + 2a2�	 . �56�

The area element 
G had to be found to second order in
displacement. To first order in displacement the shear strain
in the sphere is

S�� =
1

2
�V�;� + V�;� − V;�

� g��� . �57�

Parameterize the displacement by coefficients �a�m ,b�m ,c�m�,
such that

a = �
�m

a�mY�m, �58�

V� = g���
�m

b�mY�m,� + ����
�m

c�mY�m,�, �59�

where the Y�m are spherical harmonics and �32=−�23=sin �,
�22=�33=0 is the antisymmetric tensor. Then for example the
change in the mean curvature of the perturbed sphere is

	H = G��H�� − g��h�� = �
�m

���� + 1� − 2�a�mY�m �60�

so that the curvature energy is

Ec =
�

2 �
�m

���� + 1� − 2�2�a�m�2. �61�

It vanishes for �=1, as it must by Galilean invariance, and it
is independent of the tangential displacement V�. The other
energy expressions are

W = 4�Pa00Y00 − P�
�m

��� + 1�a�mb�m + 2P�
�m

�a�m�2

+
1

2
Pa00Y00�

�m

�− 2��� + 1�a�mb�m + ��� + 1��a�m�2

+ 2�a�m�2� , �62�

Ed =



2 �
�m

�− ��� + 1�b�m + 2a�m�2 + 
a00Y00�
�m

��− 2��� + 1�a�mb�m + ��� + 1��a�m�2 + 2�a�m�2� ,

�63�

Es =
�

2 �
�m

��� + 1����� + 1� − 2���b�m�2 + �c�m�2� . �64�

These expansions have been carried out to second order in all
coefficients, but they anticipate that a00 is the same order as
�a�m�2 for ��1, so that some terms quadratic in a00 appear to

be third order. I also anticipate that the first response to pres-
sure is a uniform compression

�a00� 
P



�65�

so that consistency requires P�
. Now seek the minimum
of the total energy

Etot = W + Ed + Es + Ec �66�

by choice of �a�m ,b�m ,c�m�. Ignoring corrections of order
P /
 gives

c�m = 0, �67�

b�m =
2
a�m


��� + 1� + ����� + 1� − 2�
, �68�

a00 = −
�PY00



− �

�m

�a�m�2

4
Y00���� + 1� − 2�

��1 +
4�


��� + 1� + ����� + 1� − 2�	 . �69�

Putting these expressions back into Etot gives

Etot = − �P2/
 + Q , �70�

where Q is a diagonal quadratic form in the coefficients a�m.
One must determine the sign of the diagonal elements in Q
since the appearance of negative coefficients in Q corre-
sponds to the onset of buckling in the corresponding mode �.
With the notation

 = ��� + 1� , �71�

the diagonal element is �−2�F��, where

F�� = −
P

2
+

2
�2� − 2� + 2�
2

�
 + �� − 2��2 + �� − 2� . �72�

It is clear that for any �2 the diagonal element becomes
negative for large enough pressure P, so that buckling must
occur, but the only relevant value of  is the one for which
this first happens as P increases. If �� ���cr, where

���cr =
�R2

2
�1 +

�



� �73�

�I have restored dimensional factors of R�, then F�� is
monotonically increasing for �2. Thus as P increases,
F�� first becomes negative for the lowest nontrivial shape
mode �=2 corresponding to =6, and the buckling will be
of quadrupole shape. If, on the other hand, �� ���cr, the
more interesting case, then F has a local minimum for some
�2, and hence a buckling mode that does not simply grow
from the translation mode but appears at a higher . Values
of � , P� for which F�� has a double root correspond to the
onset of buckling into this mode. Solving F��=0 and
F���=0 simultaneously, and restoring dimensional factors
R, one finds the buckling mode �b and buckling pressure Pb,
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�b��b + 1� =
2�� + 
2R2��
�
 + ��

�
 + ���
� R
 2�


�
 + ���
,

�74�

PbR3 =

32R2��
�
 + �� − 4�



 + �
� 4R
2�
�


 + �
.

�75�

A sphere beginning to buckle with �b�5 is shown in Fig. 3
According to Eq. �74�, the wavelength � of the buckling

mode has the form ��R2� /��1/4 argued by Cerda and Ma-
hadevan �14�, although the mechanism is not quite the same
as the one they describe. In their case the applied stress is
anisotropic, while here the symmetry breaking is spontane-
ous.

The second-order expansion does not determine how the
crumpling proceeds once buckling has occurred, but it does
give an initial condition for the crumpling equations, which
are now just a differential system of equations for
�a�m ,b�m ,c�m�. Solving this system numerically might be
tractable since the right-hand side of the system involves
only integrals of products of spherical harmonics and their
covariant derivatives over the sphere.

In doing this problem of the buckling sphere, I noticed
that second-order expansions of strains on curved surfaces
must include terms not only quadratic in normal displace-
ment a, which is the FvK prescription, but also mixed terms
like aV�. Equation �56� contains such a term, for example,
since nothing is omitted there, through second order. If such
terms are mistakenly ignored, second-order expansions of
elastic energies fail to be Galilean invariant for the simple
reason that in translating a curved surface normal and tan-
gential displacements are necessarily of the same order. It is
not true that tangential displacements are small even when
normal displacements are large, which is the FvK argument
for ignoring them. This problem with the translation mode
��=1� also affects nearby �’s, by continuity. That the expan-
sion is then only accurate for large � means that it is good

only if the wavelength of the perturbation Y�m is much less
than the radius of curvature, but this is just the case in which
we can regard the surface as flat. That is, simply generalizing
the FvK strain of Eq. �39� to a curved surface is not much of
an advance over assuming the surface to be flat. Previous
treatments that went beyond FvK are �12,13�.

VI. CAPILLARY WRINKLES

A recent paper described radial wrinkles produced in a
floating thin film by the surface tension of a small drop
placed at the center �15�. Through a combination of physical
arguments, dimensional analysis, and experiment, the phe-
nomenon was explained in a sufficiently quantitative way to
become a useful assay for the properties of the film. The
theory is that of Cerda and Mahadevan �14�. In that paper,
physical intuition simplifies the problem, which is essentially
a problem of FvK theory, but at the expense of some of the
details. The methods of this paper, guided by the intuition of
�14�, stay closer to FvK theory and show in a little more
detail how the result emerges. I also incorporate a term that
turns out to be important but that was not included in the
original discussion, the gravitational potential energy of the
supporting fluid, disturbed by the wrinkling film.

A thin-film disk of radius R floats on a water surface,
subject to surface tension �, and a small water drop of radius
� is placed at its center. It is equivalent to think of an annular
film subject to radial stress � at its outer radius R and radial
stress 2� at its inner radius �. Choose units so that �=1, and
use cylindrical polar coordinates �z ,r ,�� in the same formal-
ism as in other sections. The equilibrium state is attained by
a displacement �a ,V�� that minimizes the total energy E,
given by the sum of the elastic energies, Eqs. �41�–�43�, the
negative of the work done by surface tension

W = 2��
0

2�

V2��,���d� − ��
0

2�

V2�R,��Rd� , �76�

and the gravitational potential energy of the water

Eg =
1

2
�

0

2� �
�

R

�Wga2rdrd� , �77�

where �W is the density of water.
Expand the total energy E in the sense of FvK theory, that

is, use strains linear in V� and quadratic in a. Then in the
absence of wrinkling �i.e., a=0�, E is minimized by the ra-
dial displacement

V2 = −
A

r
+ Br �78�

with

A =
�R2

2��R2 − 1�
, B =

��R2 − 2�
2
�R2 − 1�

�79�

in which the disk is slightly dilated and sheared. In the pro-
cess the energy is lowered by
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FIG. 3. �Color online� A sphere buckles with �b�5. The color-
ing corresponds to radial deformation.
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�E = −
�2�R2

2��R2 − 1�
−

�2��R2 − 2�2

2
�R2 − 1�
. �80�

A still lower energy is attained, however �and this is a varia-
tional estimate�, by a state with m radial wrinkles of the form

a =
 cos�m��

r� , �81�

V2 = −
A

r
+ Br −

m22

8�� + 1�r2�+1 , �82�

V3 = −
m2 sin�2m��

8r2� . �83�

The form of V� is chosen to cancel the m2 term in the shear
strain due to the wrinkle a �that is the idea of �14� translated
into the language of this paper�. One is still free to choose
the parameters A, B, �, m, and , this last being the dimen-
sionless amplitude of the wrinkles. The dependence on A and
B is quadratic so that the best values are trivially found. The
energy E then has the form

E = �
i,j=0

2

Eij���2im2j �84�

with E01=E02=0. Minimizing with respect to 2 leads to

2 = −
E11 + 2E12m

2

E21 + 2E22m
2 . �85�

Since the coefficient E12 in the numerator comes from the
bending energy alone, it is negligible compared to E11, and
thus in the wrinkling regime 1 /m, in agreement with the
intuition of �14�. Substituting this value back into Eq. �84�,
one finds that the optimal m2 satisfies a cubic equation

0 = A1m6 + A2m4 + A3m2 + A4. �86�

Finally one should seek the optimal value for �. For all
physically reasonable values of the parameters in the prob-
lem, the optimal value turns out to be �=0 �only approach-
able as a limit� corresponding to wrinkles that keep a con-
stant amplitude.

The optimal values computed above turn out to be insen-
sitive to the dilation strain, due to equal stress � at inner and
outer radii, and only sensitive to the unbalanced stress � in
the center due to the drop, creating shear strain, the only
strain that can be relieved by wrinkling. Taking the limit �
→0, and also ignoring � /
 and � /�, since the bending

modulus is small for thin films, leads to simple values for the
coefficients in Eq. �86�,

A1 = − 2E12E22 � − �2
�/64, �87�

A2 = − 3E12E21 � − 3�2��/256, �88�

A3 = 2E22E10 − 4E20E12 − E11E21

� �2�WgR2
/64 + �2��/256, �89�

A4 = E10E21 − 2E20E11 � �2�WgR2�/256. �90�

The roots of Eq. �86�, for typical physical values, are deter-
mined almost entirely by A1 and A3, that is,

m � �− A3/A1�1/4 �91�

in formal agreement with �14�. There are two regimes, de-
pending on the relative importance of the gravitational term
in A3. If the gravitational term is unimportant,

m � � �

4

�1/4��

�
�1/4

. �92�

Since ��
, the dimensionless first factor is about 1 /
2
�0.7. This factor was measured experimentally in �15� and
found to be about 3.6. Because of the fourth root, the dis-
crepancy is very large. If the gravitational term dominates in
A3,

m � ��WgR2

�
�1/4��

�
�1/4

�93�

with a crossover between the two regimes at

R �
 ��

4
�Wg
� 1.4 mm, �94�

taking the value �=72�10−3 J /m2 from �15�. Since R in
that experiment was 11.4 mm, it was in the second regime,
and the dimensionless first factor in Eq. �93� is roughly 2,
still not 3.6, but closer.

Like reference �15�, this analysis does not explain the
observed length of the wrinkles, which seem here to have
length R. A solution going beyond second order, obtained by
integrating the crumpling equations forward in time, might
resolve this question.
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